research

Vortex Effects for Canard-wing Configurations at High Angles of Attack in Subsonic Flow

Abstract

A fully three-dimensional subsonic panel method that can handle arbitrary shed vortex wakes is used to compute the nonlinear forces and moments on simple canard-wing configurations. The lifting surfaces and wakes are represented by doublet panels. The Mangler-Smith theory is used to provide an initial estimate for the vortex sheet shed from the leading edge. The trailing-edge wake and the leading-edge wake downstream of the trailing edge are assumed to be straight and leave the trailing edge at an angle of alpha/2. Results indicate good agreement with experimental data up to 40 degs angle of attack

    Similar works