research

Theory of flux anisotropies in a guiding center plasma

Abstract

The one particle distribution function f on the scale of the bounce motion of particles in a magnetic field B is considered. The Vlasov equation is expanded through O(epsilon) in the adiabatic parameter which is the ratio of particle gyroradius to scale length of the magnetic field. Because f is directly proportional to particle flux differential in kinetic energy and solid angle, f is in principle measurable in space experiments, and the analysis is tailored to be explicitly applicable to space problems. To O(1), f is gyrotropic; its first velocity moment is (if non-vanishing) parallel to B, and hence macroscopic parallel flow is included in this term. The O(epsilon) contribution is non-gyrotropic and macroscopic flow parallel to B plus additional parallel flow results from these terms. The degree of non-gyrotropy and the amount of cross-field macroscopic flow depend on the perpendicular component of the electric field, on curvature and shear in the magnetic field, and on the spatial gradient, pitch angle derivative, and speed derivative of the lowest order distribution function

    Similar works