research

Fermi liquid viscosity in a finite geometry

Abstract

Forced flow of a Fermi liquid is studied for a cell geometry consisting of two planes with a separation on the order of mean free path. An approximate transport equation is used to derive an integral equation for the velocity profile, which is solved numerically. Results for the total flux through the cell, which determines the dissipation, are given as a function of the Knudsen number N (ratio of cell thickness to mean free path). Effects of specular reflection at the boundaries are considered. It is found that the dissipation has a minimum at N approximately equal to 1/2, and behaves linearly for N greater than or equal to 3. Implications for present experimentation are discussed

    Similar works