research

Handling qualities of large flexible control-configured aircraft

Abstract

The effects on handling qualities of low frequency symmetric elastic mode interaction with the rigid body dynamics of a large flexible aircraft was analyzed by use of a mathematical pilot modeling computer simulation. An extension of the optimal control model for a human pilot was made so that the mode interaction effects on the pilot's control task could be assessed. Pilot ratings were determined for a longitudinal tracking task with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes made to induce varying amounts of mode interaction. Relating numerical performance index values associated with the frequency variations used in several dynamic cases, to a numerical Cooper-Harper pilot rating has proved successful in discriminating when the mathematical pilot can or cannot separate rigid from elastic response in the tracking task

    Similar works