thesis

Multivariate approximation methods and applications to geophysics and geodesy

Abstract

The first report in a series is presented which is intended to be written by the author with the purpose of treating a class of approximation methods of functions in one and several variables and ways of applying them to geophysics and geodesy. The first report is divided in three parts and is devoted to the presentation of the mathematical theory and formulas. Various optimal ways of representing functions in one and several variables and the associated error when information is had about the function such as satellite data of different kinds are discussed. The framework chosen is Hilbert spaces. Experiments were performed on satellite altimeter data and on satellite to satellite tracking data

    Similar works