research

Mathematical models for the synthesis and optimization of spiral bevel gear tooth surfaces

Abstract

The geometry of spiral bevel gears and to their rational design are studied. The nonconjugate tooth surfaces of spiral bevel gears are, in theory, replaced (or approximated) by conjugated tooth surfaces. These surfaces can be generated by two conical surfaces, and by a conical surface and a revolution. Although these conjugated tooth surfaces are simpler than the actual ones, the determination of their principal curvatures and directions is still a complicated problem. Therefore, a new approach, to the solution of these is proposed. Direct relationships between the principal curvatures and directions of the tool surface and those of the generated gear surface are obtained. With the aid of these analytical tools, the Hertzian contact problem for conjugate tooth surfaces can be solved. These results are useful in determining compressive load capacity and surface fatigue life of spiral bevel gears. A general theory of kinematical errors exerted by manufacturing and assembly errors is developed. This theory is used to determine the analytical relationship between gear misalignments and kinematical errors. This is important to the study of noise and vibration in geared systems

    Similar works