research

Chemical and electrochemical behavior of the Cr(3)/Cr(2) half cell in the NASA Redox Energy Storage System

Abstract

The Cr(III) complexes in the NASA Redox Energy Storage System were isolated and identified as Cr(H2O)6(+3) and Cr(H2O)5Cl(+2) by ion exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles were followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations calculated using Beer's Law. During the charge mode Cr(H2O)5Cl(+2) is reduced to Cr(H2O)5Cl(+) and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(+2). Both electrode reactions occur via a chloride-bridge inner-sphere reaction pathway. Hysteresis effects can be explained by the slow attainment of equilibrium between Cr(H2O)6(+3) and Cr(H2O)5Cl(+2)

    Similar works