research

Elevated temperature behavior of superplastically formed/weld-brazed titanium compression panels having advanced shaped stiffeners

Abstract

The 316 C (600 F) buckling behavior of superplastically formed/weld-brazed titanium compression panels having advanced shaped stiffeners was investigated. Fabrication of the advanced shaped stiffeners was made possible by the increased formability afforded by the superplasticity characteristics of the titanium alloy Ti-6Al-4V. Stiffeners having the configurations of a conventional hat, a beaded web, a modified beaded web, a ribbed web, and a stepped web were investigated. The data from the panel tests include load-shortening curves, local buckling strengths, and failure loads. The superplastic formed/weld-brazed panels with the ribbed web and stepped web stiffeners developed 25 and 27 percent higher buckling strengths at 316 C (600 F) than panels with conventionally shaped stiffeners. The buckling load reductions for panels tested at 316 C (600 F), compared with panels tested at room temperature, were in agreement with predictions based on titanium material property data. The advantage that higher buckling loads can be readily achieved by superplastically forming of advanced stiffener shapes was demonstrated. Application of these advanced stiffener shapes offers the potential to achieve substantial weight savings in aerospace vehicles

    Similar works