research

Icing Characteristics and Anti-Icing Heat Requirements for Hollow and Ternally Modified Gas-Heated Inlet Guide Vanes

Abstract

A two-dimensional inlet-guide-vane cascade was investigated to determine the effects of ice formations on the pressure losses across the guide vanes and to evaluate the heated gas flow and temperature required to prevent Icing at various conditions. A gas flow of approximately 0.4 percent of the inlet-air flow was necessary for anti-icing a hollow guide-vane stage at an inlet-gas temperature of 500 F under the following icing conditions: air velocity, 280 miles per hour; water content, 0.9 gram per cubic meter; and Inlet-air static temperature, 00 F. Also presented are the anti-icing gas flows required with modifications of the hollow Internal gas passage, which show heatinput savings greater than 50 percent

    Similar works