research

Turbulent solution of the Navier-Stokes equations for uniform shear flow

Abstract

To study the nonlinear physics of uniform turbulent shear flow, the unaveraged Navier-Stokes equations are solved numerically. This extends our previous work in which mean gradients were absent. For initial conditions, modified three-dimensional-cosine velocity fluctuations are used. The boundary conditions are modified periodic conditions on a stationary three-dimensional numerical grid. A uniform mean shear is superimposed on the initial and boundary conditions. The three components of the mean-square velocity fluctuations are initially equal for the conditions chosen. As in the case of no shear the initially nonrandom flow develops into an apparently random turbulence at higher Reynolds number. Thus, randomness or turbulence can apparently arise as a consequence of the structure of the Navier-Stokes equations. Except for an initial period of adjustment, all fluctuating components grow with time. The initial equality of the three intensity components is destroyed by the shear, the transverse components becoming smaller than the longitudinal one, in agreement with experiment. Also, the shear creates a small-scale structure in the turbulence. The nonlinear solutions are compared with linearized ones

    Similar works