slides
Performing spectroscopic and specific heat studies of improper ferroelectrics
- Publication date
- Publisher
Abstract
The results of infrared measurements on Ni-Br, Cu-Cl, and Fe-I boracite improper ferroelectrics and far infrared measurements of Ni-Br boracite are presented. The boracites have the general formula X3B7O3Y, where X = divalent metal and Y = halogen. They undergo a first order phase transition from a high temperature paraelectric phase with cubic symmetry to a ferroelectric phase with orthorhombic symmetry. The boracites are "improper ferroelectrics" since the spontaneous polarization is not the primary order parameter in the cubic-orthorhombic phase transition. Current understanding of these materials is that the primary order parameter is associated with a doubly degenerate zone-boundary phonon in the cubic phase. The degenerate critical modes become homogeneous and split into the A sub 1 and A sub 2 modes in the orthorhombic phase, doubling the volume of the primitive cell. An harmonic coupling between the softing A sub 1 and a low frequency A sub 1 optic mode induces a spontaneous polarization as a secondary effect in the ferroelectric phase. This secondary non-critical nature of the ferroelectric mode earns these materials the "improper" title and is responsible for their unique properties and high figure of merit in detector use