research

Friction, wear, transfer and wear surface morphology of ultra-high-molecular-weight polyethylene

Abstract

Tribological studies at 25 C in a 50-percent-relative-humidity air atmosphere were conducted using hemispherically tipped 440 C HT (high temperature) stainless steel pins sliding against ultra-high-molecular-weight polyethylene (UHMWPE) disks. The results indicate that sliding speed, sliding distance, contact stress and specimen geometry can markedly affect friction, UHMWPE wear, UHMWPE transfer and the type of wear mechanisms that occur. Adhesion appears to be the predominant wear mechanism; but after long sliding distances at slow speeds, heavy ridges of transfer result which can induce fatigue-like wear on the UHMWPE disk wear track. In one instance, abrasive wear to the metallic pin was observed. This was caused by a hard particle embedded in the UHMWPE disk wear track

    Similar works