research

A review of NASA combustor and turbine heat transfer research

Abstract

The thermal design of the combustor and turbine of a gas turbine engine poses a number of difficult heat transfer problems. The importance of improved prediction techniques becomes more critical in anticipation of future generations of gas turbine engines which will operate at higher cycle pressure and temperatures. Research which addresses many of the complex heat transfer processes holds promise for yielding significant improvements in prediction of metal temperatures. Such research involves several kinds of program including: (1) basic experiments which delineate the fundamental flow and heat transfer phenomena that occur in the hot sections of the gas turbine but at low enthalpy conditions; (2) analytical modeling of these flow and heat transfer phenomena which results from the physical insights gained in experimental research; and (3) verification of advanced prediction techniques in facilities which operate near the real engine thermodynamic conditions. In this paper, key elements of the NASA program which involves turbine and combustor heat transfer research will be described and discussed

    Similar works