research

Electron beam charging and arc discharging of spacecraft insulating materials

Abstract

Samples of Mylar and Teflon film were exposed to combinations of monoenergetic electron and lithium ion fluxes in various ratios. The samples' discharge rates and strengths were found to diminish as the ion proportion increased. Various types of capacitors were exposed in air to beta irradiation from a 100 mCie Strontium-90 radioisotope source located at distances ranging from 2 cm to 5 cm from the capacitors. In these preliminary experiments, no evidence of spontaneous electrical breakdown was noted, nor was any change in RF impedance detectable using the available instrumentation. A decrease in DC resistance was noted, apparently due to radiation-induced conductivity. A cylindrical glass vacuum chamber is being assembled. Its inside dimensions are 44 cm diameter by 100 cm length. All necessary associated components and instruments have been acquired, including electron and ion guns, Trek surface potential probe and turbo-molecular pump. A mass-spectrometer detector for leaks and evolved gases will be ordered shortly

    Similar works