Constitutive relationships for anisotropic high-temperature alloys


A constitutive theory is presented for representing the anisotropic viscoplastic behavior of high temperature alloys that posses directional properties resulting from controlled grain growth or solidification. The theory is an extension of a viscoplastic model that was applied in structural analyses involving isotropic metals. Anisotropy is introduced through the definition of a vector field that identifies a preferential (solidification) direction at each material point. Following the development of a full multiaxial theory, application is made to homogeneously stressed elements in pure shear and to a uniaxially stressed rectangular block in plane stress with the stress direction oriented at an arbitrary angle with the material direction. It is shown that an additional material parameter introduced to characterize the degree of anisotropy can be determined on the basis of simple creep tests

    Similar works