research

On the resolvent condition in the Kreiss matrix theorem

Abstract

The Kreiss Matrix Theorem asserts the uniform equivalence over all N x N matrices of power boundedness and a certain resolvent estimate. It is shown that the ratio of the constants in these two conditions grows linearly with N, and the optimal proportionality factor is obtained up to a factor of 2. Analogous results are also given for the related problem involving matrix exponentials. The proofs make use of a lemma that may be of independent interest, which bounds the arch length of the image of a circle in the complex plane under a rational function

    Similar works