research

Experimental study of the thermal-acoustic efficiency in a long turbulent diffusion-flame burner

Abstract

An acoustic source/propagation model is used to interpret measured noise spectra from a long turbulent burner. The acoustic model is based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The model assumes that the measured noise spectra are due uniquely to the unsteady component of combustion heat release. The model was applied to a long cylindrical hydrogen burner operating over a range of power levels between 4.5 kW and 22.3 kW. Acoustic impedances at the inlet to the burner and at the exit of the tube downstream of the burner were measured and are used as boundary conditions for the model. These measured impedances are also presented

    Similar works