research

Optical and other property changes of M-50 bearing steel surfaces for different lubricants and additive prior to scuffing

Abstract

An ester lubricant base oil containing one or more standard additives to protect against wear, corrosion, and oxidation was used in an experimental ball/plate elastohydrodynamic contact under load and speed conditions such as to induce scuffing failure in short times. Both the ball and the plate were of identically treated M-50 steel. After various periods of operating time the wear track on the plate was examined with an interference microscope of plus or minus 30 A depth resolution and sometimes also with a scanning ellipsometer and an Auger spectrometer. The optically deduced surface profiles varied with wavelength, indicating the presence of surface coatings, which were confirmed by the other instruments. As scuffing was approached, a thin (approximately A) oxide layer and a carbide layer formed in the wear track in particular when tricresylphosphate antiwear additive was present in the lubricant. The rates of the formation of these layers and their reactivity toward dilute alcholic HCl depended strongly on the lubricant and additives. Based on these results suggestions for improved formulations and a test method for bearing reliability could be proposed

    Similar works