research

Transonic calculation of airfoil stability and response with active controls

Abstract

Transonic aeroelastic stability and response analyses are performed for the MBB A-3 supercritical airfoil. Three degrees of freedom are considered: plunge, pitch, and aileron pitch. The control of airfoil stability and response in transonic flow are studied. Stability analyses are performed using a Pade aeroelastic model based on the use of LTRAN2-NLR transonic small disturbance finite difference computer code. Response analyses are performed by coupling the structural equations of motion to the unsteady aerodynamic forces of LTRAN2-NLR. The focus is on transonic time marching transient response solutions using modal identification to determine stability. Frequency and damping of these modes are directly compared in the complex s-plane with Pade model eigenvalues. Transonic stability and response characteristics of 2-D airfoils are discussed and comparisons are made. Application of the Pade aeroelastic model and time marching analyses to flutter suppression using active controls is demonstrated

    Similar works