research

Usefulness of multifrequency MST radar measurements, part 2.6B

Abstract

Scattering of radio waves from atmospheric refractive-index irregularities induced by turbulence was invoked almost four decades ago to explain the characteristics of signals received on VHF/UHF ionospheric and tropospheric forward-scatter links. Due to the bistatic geometry of these links a slender, horizontally extended, common volume or cell is formed in space. The principal contribution to scattering arises from refractive-index fluctuations in this volume at the Bragg wave number K approx. sub B = K approx. sub i -k approx. sub s vectors. It has been surmised that the use of more than one frequency in probing the middle-atmosphere regions should help resolve several issues pertaining to the scattering mechanism. These issues are briefly re-examined in this note. The implications of the radar equation are discussed. The problems arising due to layered structure of turbulence and the choice of frequencies most suitable for multifrequency measurements are considered

    Similar works