research

Transformation of two and three-dimensional regions by elliptic systems

Abstract

The research during this period continued to expand the class of numerical algorithms that can be accurately and efficiently implemented on overlapping grids. Whereas previous calculations have been used to solve elliptic equations and to find the steady-state solution of parabolic equations, the present work is aimed towards developing time-accurate solution techniques for parabolic and hyperbolic equations. The primary difficulty here is in the correct treatment of the interior boundary nodes that must be updated at each iteration. The implementation of explicit methods is straightforward. However, the common practice of lagging these values when using an implicit methods leads to inconsistencies in the difference equation. One way to avoid this problem is to alternately calculate with an implicit and an explicit method on each subgrid. With this procedure, the explicit method generates boundary values at the next time level which are then used by the implicit step. It can be shown that when a backward implicit method is combined with a forward explicit method, the composite method is second order accurate and unconditionally stable for linear problems. A second area in which progress can be reported is in the distribution of grid points on curves and surfaces

    Similar works