research

Remote sensing of earth terrain

Abstract

Progress on the investigation of the anisotropy of the terrain media, such as vegetation canopy and sea ice, and the study of the fluctuation-dissipation theorem in conjunction with the application of strong fluctuation theory for passive remote sensing of snowpacks is reported. The Feynman diagrammatic technique is used to derive the Dyson equation for the mean field and the Bethe-Salpeter equation for the correlation or the covariance of the field for electromagnetic wave propagation and scattering in an anisotropic random medium. With the random permittivity expressed in a general form, the bilocal and the nonlinear approximations are employed to solve the Dyson equation and the ladder approximation to the Bethe-Salpeter equation. The mean dyadic Green's function for a two layer anisotropic random medium with arbitrary three dimensional correlation function was investigated with the zeroth-order solutions to the Dyson equation under the four characteristic waves associated with the coherent vector fields propagating in an anisotropic random medium layer, which are the ordinary and extraordinary waves with upward and downward propagating vectors

    Similar works