research
Source energy spectra from demodulation of solar particle data by interplanetary and coronal transport
- Publication date
- Publisher
Abstract
The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra