research
Simplified cyclic structural analyses of SSME turbine blades
- Publication date
- Publisher
Abstract
Anisotropic high-temperature alloys are used to meet the safety and durability requirements of turbine blades for high-pressure turbopumps in reusable space propulsion systems. The applicability to anisotropic components of a simplified inelastic structural analysis procedure developed at the NASA Lewis Research Center is assessed. The procedure uses as input the history of the total strain at the critical crack initiation location computed from elastic finite-element analyses. Cyclic heat transfer and structural analyses are performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 (nickel base). The analyses are based on a typical test stand engine cycle. Stress-strain histories for the airfoil critical location are computed using both the MARC nonlinear finite-element computer code and the simplified procedure. Additional cases are analyzed in which the material yield strength is arbitrarily reduced to increase the plastic strains and, therefore, the severity of the problem. Good agreement is shown between the predicted stress-strain solutions from the two methods. The simplified analysis uses about 0.02 percent (5 percent with the required elastic finite-element analyses) of the CPU time used by the nonlinear finite element analysis