research

Prediction of heat release effects on a mixing layer

Abstract

A fully second-order closure model for turbulent reacting flows is suggested based on Favre statistics. For diffusion flames the local thermodynamic state is related to single conserved scalar. The properties of pressure fluctuations are analyzed for turbulent flows with fluctuating density. Closure models for pressure correlations are discussed and modeled transport equations for Reynolds stresses, turbulent kinetic energy dissipation, density-velocity correlations, scalar moments and dissipation are presented and solved, together with the mean equations for momentum and mixture fraction. Solutions of these equations are compared with the experimental data for high heat release free mixing layers of fluorine and hydrogen in a nitrogen diluent

    Similar works