research

An in-situ measurement of particulates from solid rocket motors fired in space

Abstract

Current models exist that predict the damage caused by the impact of aluminum oxide exhaust particles as well as their lifetime in useable space. In these models, two necessary inputs are the size and flux of the particles. An experiment, referred to as the Plume Witness Plate, was designed for the Remote Manipulator System of the space shuttle orbiter to measure in-situ the flux and material effects of a solid rocket motor (SRM) firing in space. Five different types of samples were used to provide a broad range of substances: (1) fused quartz glass (representative of orbiter windows); (2) germanium micrometeroid capture cells; (3) orbiter HRTS tiles from the thermal protection system; (4) Kapton foil; and (5) metallic disks of aluminum, copper, titanium, graphite epoxy, and gold. The analyses of the data show excellent agreement with ground-based SRM firings in terms of particle size distribution and mass distribution. The Particle Impact Damage Integrator computer model used to calculate potential damage of orbiter surfaces by SRM exhaust plumes agrees favorable with the results in terms of particle size and velocity distributions though it may be conservative by as much as 20%

    Similar works