research

Dynamics of trusses having nonlinear joints

Abstract

The transient analysis of trusses having nonlinear joints can be accomplished using the residual force technique. The technique was applied a two degree of freedom spring mass system, a four bay planar truss, and an actual ten bay deployable truss. Joints chosen for analysis were the nonlinear gap joints and the linear Voigt joints. Results from the nonlinear gap analyses generally indicate that coupling between the modes can display some interesting effects during free vibration. One particularly interesting effect was that the damping of the structure appeared to be higher than could be accounted for from modal damping alone. Energy transferral from the lower to the higher modes was found to exist as a result of the modal coupling. The apparently increased damping was due to the fact that the energy transferred to the higher modes is inherently dissipated more quickly. Another interesting phenomenon was that the lower modes could drive the higher modes even during free vibration and that these modes could display a rather large quasi-steady state behavior even when modal damping was present. Gaps were also found to increase the amplitude and period of the free vibration response as expected

    Similar works