research

Design of a dual fault tolerant space shuttle payload deployment actuator

Abstract

As the Shuttle Transportation System (STS) becomes operational, the number and variety of payloads will increase. The need to deploy these cargo elements will require a variety of unique actuator designs, all of which will have to conform with STS safety policy. For those missions where payload operations extend beyond the payload bay door envelope, this policy deems the prevention of door closure as a catastrophic hazard. As such, it must be controlled by independent, primary and backup methods. The combination of these methods must be two fault tolerant. The design of such an actuator is described. The device consists of a single linear ballscrew with two ballnuts, each bellnut forming an independent actuator using the common ballscrew. The design requirements, concept development, hardware configuration, and fault tolerance rationale are highlighted

    Similar works