research
Investigation of fiber bridging in double cantilever beam specimens
- Publication date
- Publisher
Abstract
The possibility to eliminate fiber bridging or at least to reduce it, and to evaluate an alternative approach for determination of in situ mode 7 fracture toughness values of composite matrix materials were investigated. Double cantilever beam (DCB) specimens were made using unidirectional lay-ups of T6C/Hx205 composite material in which the delaminating halves were placed at angles of 0, 1.5, and 3 degrees to each other. The small angles between the delaminating plies were used to avoid fiber nesting without significantly affecting mode I teflon insert. The DCB specimens were fabricated and it was found that: (1) the extent which fiber bridging and interlaminar toughness increase with crack length can be reduced by slight cross ply at the delamination plane to reduce fiber nesting; (2) some fiber bridging may occur even in the absence of fiber nesting; (3) the first values of toughness measured ahead of the thin teflon insert are very close to the toughness of the matrix material with no fiber bridging; (4) thin adhesive bondline of matrix material appears to give toughness values equal to the interlaminar toughness of the composite matrix without fiber bridging