research

The loss and depth of CO2 ice in comet nuclei

Abstract

An analytical model was developed to simulate the material differentiation of a cometary nucleus composed of water ice, putative unclathrated CO2 ice and silicate dust in specified proportions. Selective sublimation of any free CO2 ice present in a comet would produce a surface layer of water ice and dust overlying the original CO2 rich material. This surface layer reduces the temperature of buried CO2 ice and restricts the outflow of gaseous CO2. On each orbit, water sublimation at smaller heliocentric distances temporarily reduces the thickness of the water ice and dust layer and liberates dust. The model includes the effects of nucleus rotation, arbitrary orientation of the rotation axis, latitude, heat conduction into the deep interior of the nucleus and restriction of CO2 gas outflow by the water ice and dust layer. The effects of the permeability of the surface water ice layer, the nucleus rotation rate, and the latitude were investigated. Comparison of these and similar results with observations could yield information regarding the permeability and chemical composition of cometary material and suggest sampling strategies to minimize fractionation effects

    Similar works