unknown

Graphite fiber intercalation: Basic properties of copper chloride intercalated fibers

Abstract

In situ resistance measurements were used to follow the intercalation of copper chloride in pitch-based fibers. Subsequent single fiber resistivity measurements reveal a large range of resistivities, from 13 to 160 micro-ohms cm. Additional density measurements reveal a bimodal distribution of mass densities. The dense fibers have lower resistivities and correspond to the stage III compound identified by X-ray diffraction. Neither resistivity nor density correlate with diameter. Both energy dispersive spectroscopy and mass density data suggest that excess chlorine resides in the intercalated fiber, resulting in a stoichiometry of C4.9n CuCl2.5 (where n is the stage number) for the denser fibers. Finally, thermogravimetric analysis shows a 33 percent loss in mass upon heating to 700C. This loss in mass is attributed to loss of both chlorine and carbon

    Similar works