research

Preliminary results of geologic and remote sensing studies of Rima Mozart

Abstract

In order to better understand the processes responsible for the formation of lunar sinuous rilles, a study of Rima Mozart was conducted using a variety of geologic, photographic, and remote sensing data. The apparent source of this rille is located in a highlands unit of known composition and it is hypothesized that thermal and mechanical erosion played an important role in the formation of Rima Mozart. Excellent photographic, topographic, multispectral, and radar data exist for this rille. The preliminary results of an analysis of this data are presented. Photographic data indicates the presence of two volcanic source vents for Rima Mozart: Kathleen and Ann. It is suggested that Rima Mozart, like many other lunar sinuous rilles, was most likely formed by a combination of events. Rima Mozart does follow a pre-existing, dominant NW/SE structural trend suggesting the influence of structural features on the rille, however, the tectonic influence is not the sole source for the formation of the rille, as suggested by the presence of the two source vents and the spatter around Ann. It is suggested that the rille formation began with an explosive eruption at Kathleen which later calmed down to a pulsating, high volume, low-viscosity lava flow. The rapid effusion rate of the magma as well as its high temperature and turbid nature helped carve the sinuous rille into the fractured and structurally weak Apennine Bench Formation underneath. Similar eruptions and subsequent flows were also created at Ann and joined to the main channel by a NE-trending secondary rille

    Similar works