unknown

Oxide-dispersion-strengthened turbine blades, volume 1

Abstract

The objective of Project 4 was to develop a high-temperature, uncooled gas turbine blade using MA6000 alloy. The program objectives were achieved. Production scale up of the MA6000 alloy was achieved with a fair degree of tolerance to nonoptimum processing. The blade manufacturing process was also optimized. The mechanical, environmental, and physical property evaluations of MA6000 were conducted. The ultimate tensile strength, to about 704 C (130 F), is higher than DS MAR-M 247 but with a corresponding lower tensile elongation. Also, above 982 C (180 F) MA6000 tensile strength does not decrease as rapidly as MAR-M 247 because the ODS mechanism still remains active. Based on oxidation resistance and diffusional stability considerations, NiCrAlY coatings are recommended. CoCrAly coating should be applied on top of a thin NiCrAlY coating. Vibration tests, whirlpit tests, and a high-rotor-rig test were conducted to ensure successful completion of the engine test of the MA6000 TFE731 high pressure turbine blades. The results of these tests were acceptable. In production quantities, the cost of the Project 4 MA6000 blade is estimated to be about twice that of a cast DS MAR-M 247 blade

    Similar works