research

Investigation of hypersonic rarefied flow on a spherical nose of the AOTV

Abstract

The Navier-Stokes (NS) equations were integrated numerically for investigating the flow characteristics on the forepart of the spherical nose of a space vehicle such as the AOTV or AFE by a modified Accelerated Successive Replacement (ASR) scheme under hypersonic rarefied conditions. Technical feasibility of the mathematical approach was demonstrated by computing the flowfield on a spherical nose under conditions that the AFE encounters at times t = 15 and 20 seconds after its reentry into the atmosphere. Local similar solutions for the merged layer flow along the stagnation line of the sphere were developed. These are correct to the same degree of accuracy as the NS equations. These solutions provided stagnation line boundary conditions for the domain of integration on the spherical noise. Also, a parametric study of the stagnation line solution was made with a view to understand the flow characteristics in tunnels with different ambient fluids. Analytical expressions for surface slip temperature, jump conditions, and concentration level in the presence of the real gas effects at the top of the Knudsen layer were derived and used to calculate the stagnation line flowfield with nonequilibrium dissociation and ionization. A number of graphics were drawn to illustrate the basic physics of the flowfields. The present analysis can be extended to include real gas effects and to bodies of arbitrary shapes. It can further provide boundary conditions for integrating the NS equations in the near wake region

    Similar works