research
Comparison of flexural properties of aramid-reinforced pultrusions having varied matrices, pretreatments and postcures
- Publication date
- Publisher
Abstract
Aramid-reinforced composite materials of equal fiber volume and varied polymer thermoset matrices were pultruded and flexurally tested to failure. The objective was to improve the flexural properties of aramid-reinforced pultrusions. Pultrusions of both sized and unsized aramid fiber with four different resin systems were compared to determine the effects of sizing compounds and postcuring on flexural strength, fiber wettability, and fiber-to-resin interface bonding. Improvements in flexural strength resulting from pretreatments with the sizing solutions used were marginal. The most significant improvements in flexural properties resulted from postcuring. Flexural strengths ranged from a low of 39,647 psi (273MPa) to a high of 80,390 psi (554 MPa), an overall increase of 103 percent. The fact that postcuring improved the flexural properties of the pultrusions of the four resin systems indicates that a full cure did not occur in any of the resin systems during the pultrusion process. The increased flexural strengths of the polyester and vinyl ester pultrusions were the most surprising. The four resin systems examined were Interplastic Corporation VE 8300 vinyl ester, Ashland Chemical Company Aropol 7430 Polyester, and Shell Chemical Company Epon 9302 and Epon 9310 epoxides