research

Polyphase alloys as rechargeable electrodes in advanced battery systems

Abstract

The rechargeability of electrochemical cells is often limited by negative electrode problems. These may include loss of capacity, increased impedance, macroscopic shape change, dendrite growth, or a tendency for filamentary or whisker growth. In principle, these problems can be reduced or eliminated by the use of alloys that undergo either displacement or insertion reactions at reactant species activities less than unity, rather than pure elements. The fundamental reasons for some of these problems with elemental electrodes, as well as the basic principles involved in the different behavior of alloys, are briefly discussed. More information is now available concerning the thermodynamic and kinetic properties of a number of alloys of potential interest for use as electrodes in elevated temperature lithium battery systems. Recent results have extended these results down to ambient temperatures, indicating that some such materials may be of interest for use with new low temperature molten salt electrolytes, or with organic solvent electrolytes. The all solid mixed conductor matrix concept is also reviewed

    Similar works