research

The use of the QR factorization in the partial realization problem

Abstract

The use of the QR factorization of the Hankel matrix in solving the partial realization problem is analyzed. Straightforward use of the QR factorization results in a realization scheme that possesses all of the computational advantages of Rissanen's realization scheme. These latter properties are computational efficiency, recursiveness, use of limited computer memory, and the realization of a system triplet having a condensed structure. Moreover, this scheme is robust when the order of the system corresponds to the rank of the Hankel matrix. When this latter condition is violated, an approximate realization could be determined via the QR factorization. In this second scheme, the given Hankel matrix is approximated by a low-rank non-Hankel matrix. Furthermore, it is demonstrated that column pivoting might be incorporated in this second scheme. The results presented are derived for a single input/single output system, but this does not seem to be a restriction

    Similar works