research

Navier-Stokes cascade analysis with a stiff Kappa-Epsilon turbulence solver

Abstract

The two dimensional, compressible, thin layer Navier-Stokes equations with the Baldwin-Lomax turbulence model and the kinetic energy-energy dissipation (k-epsilon) model are solved numerically to simulate the flow through a cascade. The governing equations are solved for the entire flow domain, without the boundary layer assumptions. The stiffness of the k-epsilon equations is discussed. A semi-implicit, Runge-Kutta, time-marching scheme is developed to solve the k-epsilon equations. The impact of the k-epsilon solver on the explicit Runge-Kutta Navier-Stokes solver is discussed. Numerical solutions are presented for two dimensional turbulent flow over a flat plate and a double circular arc cascade and compared with experimental data

    Similar works