research
Development and application of computational aerothermodynamics flowfield computer codes
- Publication date
- Publisher
Abstract
Multiple nozzle plume flow field is computed with a 3-D, Navier-Stokes solver. Numerical simulation is performed with a flux-split, two-factor, time asymptotic viscous flow solver of Ying and Steger. The two factor splitting provides a stable 3-D solution procedure under ideal-gas assumptions. An ad-hoc acceleration procedure that shows promise in improving the convergence rate by a factor of three for steady state problems is utilized. Computed solutions to generic problems at various altitude and flight conditions show flow field complexity and three-dimensional effects due to multiple nozzle jet interactions. Viscous, ideal gas solutions for the symmetric nozzle are compared with other numerical solutions