thesis

Identification of visual evoked response parameters sensitive to pilot mental state

Abstract

Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads

    Similar works