research

Short baseline phase delay interferometry

Abstract

The high precision of the phase delay data type allows angular navigation accuracy on relatively short baselines to compete with the angular accuracy achieved with long baseline group delay measurements. Differential phase delay observations of close quasar pairs on both a 5.9-km baseline (DSS 12-DSS 13) and a 253-km baseline (DSS 13-Owens Valley Radio Observatory) have been performed to study the potential navigational precision and accuracy of the short baseline interferometry. As a first step toward demonstration of a connected element system at Goldstone, the DSS 12-DSS 13 baseline was operated coherently, distributing a common frequency reference via a recently installed fiber optic cable. The observed phase delay residuals of about 10 psec or less on both baselines appear to be dominated by short term troposphere fluctuations, and correspond to navigational accuracies of well below 50 nrad for the 253-km baseline. Additional experiments will be required to probe the full range of systematic errors

    Similar works