research

L-band and SHF multiple access schemes for the MSAT system

Abstract

The first generation of the Canadian Mobile Satellite (MSAT) system, planned to be operational in the early 1990s, will provide voice and data services to land, aeronautical, and maritime mobile terminals within the Canadian land mass and its territorial waters. The system will be managed by a centralized Demand Assignment Multiple Access (DAMA) control system. Users will request a communication channel by communicating with the DAMA Control System (DCS) via the appropriate signalling channels. Several access techniques for both L-band and SHF signalling channels have been investigated. For the L-band, Slotted Aloha (SA) and Reservation Aloha (RA), combined with a token scheme, are discussed here. The results of Telesat studies to date indicate that SA, when combined with token scheme, provides the most efficient access and resource management tool in a mobile propagation environment. For SHF signalling channels, slim time division multiple access (TDMA) and SA have been considered as the most suitable candidate schemes. In view of the operational environment of the SHF links, provision of a very short channel access delay and a relatively high packet success rate are highly desirable. Studies carried out generally favor slim-TDMA as the most suitable approach for SHF signalling channels

    Similar works