research

Raman intensity as a probe of concentration near a crystal growing in solution

Abstract

The feasibility of using Raman spectral scattering signals for measurements of concentration profiles near a crystal interface during growth or dissolution is discussed. With KH2PO4 (KDP) as a test material, optical multichannel analyzer (OMA) detection of a solute Raman vibrational band provided direct quantification of solute concentration with band intensity. The intersection of incident laser and Raman collection optics provided 3-D selective point measurements of the solution concentration field. Unlike many other techniques, the Raman band intensity is not sensitive to the typical temperature variations. Precision calibration of Raman intensity versus KDP concentration with less than 1 pct standard deviation error levels was demonstrated. A fiber optic, which sampled incident laser intensity and coupled it to the OMA, provided a fully synchronized monitor of fluctuations in laser power to correlate with observed Raman signals. With 1 W of laser power at the sample, good data statistics required eight repeated data collections at approximately 2.5 min collection. The accumulated time represents the concentration measurement time at one spatial location. Photomicroscopy documented a 30 micrometer diameter by 200 micrometer of laser Raman scattering region in the solution near the crystal surface. The laser beam was able to approach up to 25 micrometer from the crystal surface. However, a crystal surface reflected intensity contribution was weakly detectable. Nucleated microcrystals were seen in the crystal-growing solution. These microcrystals convect right up to the crystal surface and indicate no quiet diffusion region under normal gravity conditions. Translation of the solution cell with respect to the optics caused systematic intensity errors

    Similar works