research

Ring cusp/hollow cathode discharge chamber performance studies

Abstract

An experimental study was performed to determine the effects of hollow cathode position, anode position, and ring cusp magnetic field configuration and strength on discharge chamber performance. The results are presented in terms of comparative plasma ion energy cost, extracted ion fraction, and beam profile data. Such comparisons are used to demonstrate whether changes in performance are caused by changes in the loss rate of primary electrons to the anode or the loss rate of ions to discharge chamber walls or cathode and anode surfaces. Results show: (1) the rate of primary electron loss to the anode decreases as the anode is moved downstream of the ring cusp toward the screen grid; (2) the loss rate of ions to hollow cathode surfaces are excessive if the cathode is located upstream of a point of peak magnetic flux density at the discharge chamber centerline; and (3) the fraction of the ions produced that are lost to discharge chamber walls and ring magnet surfaces is reduced by positioning of the magnet rings so the plasma density is uniform over the grid surface, and adjusting their strength to a level where it is sufficient to prevent excessive ion losses by Bohm diffusion

    Similar works