research
Addition polymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and Bis-dienes. 2: Evidence for thermal dehydration occurring in the cure process
- Publication date
- Publisher
Abstract
Diels-Alder cycloaddition copolymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and anthracene end-capped polyimide oligomers appear, by thermogravimetric analysis (TGA), to undergo dehydration at elevated temperatures. This would produce thermally stable pentiptycene units along the polymer backbone, and render the polymers incapable of unzipping through a retro-Diels-Alder pathway. High resolution solid 13C nuclear magnetic resonance (NMR) of one formulation of the polymer system before and after heating at elevated temperatures, shows this to indeed be the case. NMR spectra of solid samples of the polymer before and after heating correlated well with those of the parent pentiptycene model compound before and after acid-catalyzed dehydration. Isothermal gravimetric analyses and viscosities of the polymer before and after heat treatment support dehydration as a mechanism for the cure reaction