research

Lower bound on e+e- decay of massive neutrinos

Abstract

Astronomical observations of SN1987A, such as the light curve, spectral intensities of lines, the X-ray emissions, etc., constrain the lifetime for the decay of a heavy neutrino 1 MeV less than or equivalent to m sub nu H less than or equal to 50 MeV through nu sub H yields nu sub 1+e(+)+e(-) exceeds 4 x 10 to the 15th exp(-m sub nuH/5MeV) seconds. Otherwise. resulting ionization energy deposits and stronger X-ray emission would have been observed. This coupled with traditional cosmological considerations argues that the lifetime of tau-neutrinos probably exceeds the age of the universe. This in turn would imply the standard cosmological mass bound does apply to nu sub tau, namely m sub nu sub tau less than or equivalent to 100 h squared eV (where h is the Hubble constant in units of 100 km/sec/mpc). The only significant loophole for these latter arguments would be if nu sub tau primarily decays rapidly into particles having very weak interactions

    Similar works