research

Shatter cones: Diagnostic impact signatures

Abstract

Uniquely fractured target rocks known as shatter cones are associated with more than one half the world's 120 or so presently known impact structures. Shatter cones are a form of tensile rock failure in which a positive conical plug separates from a negative outer cup or mold and delicate ornaments radiating from an apex are preserved on surfaces of both portions. Although distinct, shatter cones are sometimes confused with other striated geologic features such as ventifacts, stylolites, cone-in-cone, slickensides, and artificial blast plumes. Complete cones or solitary cones are rare, occurrences are usually as swarms in thoroughly fractured rock. Shatter cones may form in a zone where an expanding shock wave propagating through a target decays to form an elastic wave. Near this transition zone, the expanding primary wave may strike a pebble or other inhomogeneity whose contrasting transmission properties produce a scattered secondary wave. Interference between primary and secondary scattered waves produce conical stress fields with axes perpendicular to the plane of an advancing shock front. This model supports mechanism capable of producing such shatter cone properties as orientation, apical clasts, lithic dependence, and shock pressure zonation. Although formational mechanics are still poorly understood, shatter cones have become the simplest geologic field criterion for recognizing astroblemes (ancient terrestrial impact structures)

    Similar works