research

A viscoplastic constitutive theory for metal matrix composites at high temperature

Abstract

A viscoplastic constitutive theory is presented for representing the high temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is assumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity

    Similar works