research

Late Wenlock (middle Silurian) bio-events: Caused by volatile boloid impact/s

Abstract

Late Wenlockian (late mid-Silurian) life is characterized by three significant changes or bioevents: sudden development of massive carbonate reefs after a long interval of limited reef growth; sudden mass mortality among colonial zooplankton, graptolites; and origination of land plants with vascular tissue (Cooksonia). Both marine bioevents are short in duration and occur essentially simultaneously at the end of the Wenlock without any recorded major climatic change from the general global warm climate. These three disparate biologic events may be linked to sudden environmental change that could have resulted from sudden infusion of a massive amount of ammonia into the tropical ocean. Impact of a boloid or swarm of extraterrestrial bodies containing substantial quantities of a volatile (ammonia) component could provide such an infusion. Major carbonate precipitation (formation), as seen in the reefs as well as, to a more limited extent, in certain brachiopods, would be favored by increased pH resulting from addition of a massive quantity of ammonia into the upper ocean. Because of the buffer capacity of the ocean and dilution effects, the pH would have returned soon to equilibrium. Major proliferation of massive reefs ceased at the same time. Addition of ammonia as fertilizer to terrestrial environments in the tropics would have created optimum environmental conditions for development of land plants with vascular, nutrient-conductive tissue. Fertilization of terrestrial environments thus seemingly preceded development of vascular tissue by a short time interval. Although no direct evidence of impact of a volatile boloid may be found, the bioevent evidence is suggestive that such an impact in the oceans could have taken place. Indeed, in the case of an ammonia boloid, evidence, such as that of the Late Wenlockian bioevents may be the only available data for impact of such a boloid

    Similar works