research

Rotor induced-inflow-ratio measurements and CAMRAD calculations

Abstract

Comparison of the inflow calculations between an analytical rotor wake method and rotor inflow measurements using a laser velocimeter was presented. The inflow measurements were made near a 4-bladed rotor system using rectangular planform blades operating in forward flight at a thrust coefficient of 0.0064, and at 3 rotor advance ratios: 0.15, 0.23, and 0.30. The inflow measurements were made at azimuthal increments of 30 degrees at 3.0 inches (approximately 1 chord) above the plane formed by the tips of the blades, and radial locations from 20 to 110 percent of blade span. The experimental measurements showed that as the advance ratio (m) increased, the induced upflow region moved progressively from the forward 20 percent of the rotor disc at m = 0.15 to covering most of the forward half of the rotor disc at m = 0.30. The induced inflow characteristics at all advance ratios were found to be unsymmetrical about the longitudinal centerline. The maximum downwash was found to be in the rear portion of the disc and skewed toward the advancing blade side. The comparisons with the analytical method Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD) show that the region of induced upflow over the rotor disc was effectively modeled only at the advance ratio of 0.15. The method consistently indicated the largest values of induced inflow ratio to be on the retreating-blade side of the rotor disc (opposite from that measured). The importance of the choice of rotor trim option is examined and results of two trim selections are detailed

    Similar works